

Plan and Progress on Experimental Validation of Computational Small Rotor Design Optimization Tools

Leonard V. Lopes
NASA Langley Research Center
leonard.v.lopes@nasa.gov

Acoustics Technical Working Group April 13-14, 2021

Advanced Air Mobility (AAM) Challenge

- Opportunities of AAM vehicles are numerous
 - Large sized vehicles for intraregional transportation
 - Medium sized vehicles for urban and rural applications (UAM)
 - Small sized vehicles for package deliveries and surveillance (sUAS)
- AAM challenges aeronautics community with unique challenges in performance and community impact
 - Safety
 - Reliability
 - Automation
 - Community impact (noise)

AAM Challenge

NASA

- Traditional large transport vehicles limit design opportunities
 - Tube and wing
- Large helicopters and multirotor vehicles do have design opportunities but are limited also
 - Traditional main/tail configurations
 - X-rotors, tandem, etc.
- AAM vehicles offer significantly more design opportunities
 - Rotor count, placement, blade count, rotation direction
 - Wing design and placement, installation effects
 - Blade shape and rotor sizing
- AAM vehicles also have significantly different flight mission requirements
- Offers opportunity to design from the ground up
- What can our design tools predict, what do our design tools miss?
 - Do validation data exist?

Design Optimization

- Many ways to optimize design for increased performance and/or reduced community impact
 - Genetic algorithms, neural nets, gradient based, etc.
- Adjoint based design optimization and backwards differentiation allow for much finer grain
 - Perfect for small number of objectives (noise metric) with many design variables
 - Design variables: blade shape, installation parameters, mission performance requirements, mission flight paths, etc.
 - Can incorporate constraints (performance)
 - Challenging to do integer optimizations (such as rotor count)
 - Can (with adequate computational effort) do installation effects
- Design optimization procedure:

<u>Objective</u>

- Validate computational optimization design tools
 - Noise measurement and computation (multiple rotors, installation, etc.)
 - Mission from takeoff to landing (community impact objective)
 - Must have measurement data set of baseline configuration (starting point)
- Process of validation
 - 1. Select baseline configuration geometry and measurement data
 - 2. Validate our tools against baseline configuration data
 - 3. Run design tools to get optimized designs with performance constraints
 - 4. Fabricate optimized designs
 - 5. Test optimized designs under same conditions to see predicted improvement
- What available data can be used as starting point
 - Limited full-scale data, restricted to isolated rotor at this time
 - Noisy rotor in a repeatable environment
 - More than one flight condition
 - Array of microphones for multiple emission angles (long duration flight)

Available LSAWT Data

- Helically Twisted Rotor (HTR) aka C24ND
 - Used for checkout of Propeller Test Stand (PTS)
 - D = 24" (prop diameter)
 - P = 16" (prop pitch)
 - C = 1.5" (constant chord length)
 - NACA 0012 airfoils
 - Measurement data for multiple flight conditions
- This is a very noisy rotor

Helically Twisted Rotor (HTR) Data

Forward Flight Condition:

- (22 lbs.)
- .2 Nm (72.2 in-lbs.)
- Hover Condition:

- (59.1 lbs.)
- 16.3 Nm (144 in-lbs.)

- Preliminary Data and Predictions:
 - Some thermal drift in thrust measurement may be present
 - Recent improvements to PTS improves thermal drift resulting in more accurate load measurements
 - ANOPP PAS has some difficulty predicting separation for hover condition
- Credit Nikolas Zawodny

Objective Function

- Incorporate as much as possible into objective function
 - Only have isolated rotor data
 - More than one flight condition to simulate maneuver
 - Directivity to simulate flyover and multiple observers
 - Frequency weighting to simulate human response
 - Performance constraints (not shown)
 - Optimized design must generate same thrust
 - Optimized design torque cannot increase

Integrate mean square pressure fluctuations over microphone array Directivity limits () are functions of tunnel speed

<u>Optimization Tools</u>

- Two tool fidelities
 - Low granularity / fast computation (BEMT)
 - High granularity / computationally intensive (CFD)
- Four optimization tool approaches
 - CCBlade.jl BEMT code with compact acoustic sources
 - ABEAT BEMT code with compact/noncompact acoustic sources
 - FUN3D Unstructured CFD code
 - SU2 Unstructured CFD code

CCBlade.jl

- Blade element momentum theory (BEMT)
 - Compact formulation of F1A
 - Very fast approximation of the noise
 - Simple approximation of blade shape influence on airfoil section lift and drag
- Much more detail and preliminary results in Dan Ingraham's talk following this talk

ANOPP2's Blade Element Acoustic Tool (ABEAT)

Capability

- Fast computation of noise from vehicle with single (helicopter) or multirotor (GL-10)
- Each rotor may have similar airfoil geometry but may differ in RPM, phase offset, inflow, rotor angle of attack
- Use linear inflow models (such as uniform, Pitt-Peters, etc.) but may also couple with user specified inflow
- Include empirical broadband noise prediction (define boundary layer conditions and noise predictions)
- No trimming, kinematics of propeller/rotor blades are fixed pitch (currently)
- Only compact sources for tonal noise (currently, will be updated with next iteration)
- Motor noise when ready

Available in ANOPP2v1.3

FUN3D CFD Solver

- Physical time stepping:
 - 2nd order in time (BDF2OPT)
- Spatial differencing
 - 2nd order row upwind for inviscid terms
 - 2nd order central differencing for viscous terms
- Turbulence model
 - Spalart-Allmaras one-equation model
- Unstructured overset grids
- Steady and unsteady Predictions
- Adjoint capable

SU2 CFD Solver

NASA

- "Stanford University Unstructured (SU2)" is an open source PDE solver
- Active developer base around the world with many applications
- Adjoint-based capable for design
- Vertex-based, unsteady Reynolds-Averaged Navient-Stokes (URANS)

Current Status and Plan Moving Forward

NASA

- Currently validating acoustic prediction of baseline design
 - Each of four methods at different stages of validation
 - Some methods have produced optimized designs with some success
 - Have not incorporated full objective function
 - Some code development still underway
- Hope to have several optimized candidates by early summer
 - Currently have a few designs that can be fabricated but not final
 - New designs ready to fabricate by early summer
 - Placed in LSAWT in late summer / early fall
 - Maybe present preliminary comparisons at fall ATWG

Personnel

- ► Justin Gray (NASA Glenn)
 - Leading Multidisciplinary Design Optimization (MDAO) effort
- ► Daniel Ingraham (NASA Glenn)
 - Acoustic optimization using CCBlade.jl (following presentation)
- ➤ Douglas Nark (NASA Langley)
 - FUN3D design optimization
- ►Oktay Basal and Omur Icke (ODU) with Boris Diskin (NIA)
 - SU2 design optimization
 - Special thanks to Beckett Zhou of TU Kaiserslautern
- ► Joshua Blake and ANOPP2 development team (NASA Langley)
 - ABEAT development and design optimization
- ► Nikolas Zawodny (NASA Langley)
 - LSAWT experiments and validation database generation

Conclusions

- Reviewed benefits of UAM vehicles to airspace
- Presented a gradient based design optimizations approach for UAM
- Outlined a methodology for validating optimization tools
- Showed selection of helically twisted rotor test in LSAWT as baseline
- Presented four optimization tools of differing fidelity and capability
- Outlined plan for future measurements in LSAWT of optimized designs

<u>Acknowledgments</u>

Support

Transformational Tools & Technologies (TTT) Project in the Transformative Aeronautics Concepts Program (TACP)